Logran fotografiar en luz polarizada a un masivo agujero negro

Se trata del mismo objeto que fue fotografiado por primera en 2019; la actual imagen permite conocer cómo se comportan los campos magnéticos a su alrededor.

La colaboración científica del Telescopio del Horizonte de Sucesos (EHT por sus siglas en inglés), que en 2019 permitió obtener la primera imagen de un agujero negro, ha revelado hoy una nueva perspectiva del objeto masivo en el centro de la galaxia M87: cómo se ve en luz polarizada.

Se trata de la primera vez que los astrónomos han podido medir polarización, la “firma” de los campos magnéticos, tan cerca del borde de un agujero negro. Las observaciones son clave para explicar cómo la galaxia M87, ubicada a 55 millones de años luz de distancia, puede lanzar chorros de material muy energéticos desde su núcleo.

Estamos ante una evidencia única para comprender cómo se comportan los campos magnéticos alrededor de los agujeros negros, y cómo la actividad en esta región tan compacta del espacio puede impulsar poderosos chorros que se extienden mucho más allá de la galaxia”, apunta Monika Mościbrodzka, coordinadora del grupo de trabajo de polarimetría del EHT y profesora asistente en la Universidad de Radboud (Países Bajos).

La primera imagen del agujero negro que se publicó el 10 de abril de hace dos años revelaba una estructura brillante en forma de anillo con una región central oscura: la sombra del agujero. Desde entonces, la colaboración EHT ha profundizado en los datos sobre el objeto supermasivo en el corazón de la galaxia M87 recopilados en 2017 y ha descubierto que una fracción significativa de la luz alrededor del agujero negro M87 está polarizada.

Luminosos chorros de energía y materia

Los brillantes chorros de energía y materia que emergen del núcleo de M87 y se extienden al menos hasta cinco mil años luz de su centro son una de las características más misteriosas y enérgicas de la galaxia. La mayor parte de la materia que se encuentra cerca del borde de un agujero negro cae dentro. Sin embargo, algunas de las partículas circundantes escapan momentos antes de la captura y son expulsadas al espacio en forma de chorros.

El equipo se ha basado en diferentes modelos de cómo se comporta la materia cerca del agujero negro para comprender mejor este proceso. Pero todavía no saben exactamente cómo se propulsan chorros más extensos que la propia galaxia desde su región central, tan pequeña en tamaño como el Sistema Solar, ni cómo cae la materia en el agujero negro. Con la nueva imagen del EHT del agujero negro, los astrónomos han logrado atisbar por primera vez la región límite del agujero negro donde ocurre esta interacción entre la materia que fluye hacia adentro y la que es expulsada.

Las observaciones proporcionan información nueva sobre la estructura de los campos magnéticos en el borde del agujero negro. El equipo descubrió que solo los modelos teóricos con gas fuertemente magnetizado pueden explicar lo que están viendo en el horizonte de sucesos.

“Las observaciones sugieren que los campos magnéticos en el borde del agujero negro son lo suficientemente intensos como para retener el gas caliente y ayudarlo a resistir la atracción de la gravedad. Solo el gas que se desliza a través del campo puede girar en espiral hacia el horizonte de eventos”, explica Jason Dexter, profesor asistente de la Universidad de Colorado en Boulder (EEUU) y coordinador del grupo de trabajo de teoría del EHT.

Unión de 8 telescopios y 300 investigadores

Para observar el corazón de la galaxia M87, la colaboración vinculó ocho telescopios de todo el mundo, entre ellos el radiotelescopio IRAM de 30 metros en Pico Veleta (Sierra Nevada), para crear un telescopio virtual del tamaño de la Tierra, el EHT. La impresionante resolución obtenida con el EHT es equivalente a la necesaria para medir la longitud de una tarjeta de crédito en la superficie de la Luna.

Esto permitió al equipo observar directamente la sombra del agujero negro y el anillo de luz a su alrededor, con la nueva imagen de luz polarizada que muestra claramente que el anillo está magnetizado. Los resultados se publican hoy en dos artículos separados en The Astrophysical Journal Letters firmados por la colaboración EHT. La investigación involucró a más de trescientos investigadores de múltiples organizaciones y universidades de todo el mundo.

(Agencia SINC)